

The potential of straw mulch as a nature-based solution in olive groves. A biophysical and socio-economic assessment

¹Artemi Cerdà, ¹Ana Pérez Albarracín, ²Yannis Daliakopoulos, ³Antonio Giménez Morera,

¹Francisco Escrivá Saneugenio, ⁴Saskia Deborah Keesstra, ⁵Jesús Barrena and ⁶Jesús Rodrigo-Comino

¹*Soil Erosion and Degradation Research Group. Department of Geography, Valencia University, Blasco Ibàñez, 28, 46010 Valencia, Spain.*

²*Department of Agriculture, Hellenic Mediterranean University, 71410 Heraklion, Greece.*

³*Departamento de Economía y Ciencias Sociales, Escuela Politécnica Superior de Alcoy, Universidad Politécnica de Valencia. Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy, Alicante, Spain.*

⁴*5Climate-Kic Holding B.V. Plantage Middenlaan 45, Amsterdam, the Netherlands.*

⁵*Instituto Universitario de Investigación para el Desarrollo Territorial Sostenible, University of Extremadura, Cáceres, Spain*

⁶*Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, España.*

Abstract

Olive groves are characterised by intense herbicide use to avoid weeds in the fields. Bare soils result in high and non-sustainable soil and water losses, and in the end in soil degradation. There is a need to find proper management strategies to reach sustainability; and Nature-Based Solutions (NBSs) are the most appropriate options. The use of straw as a mulch can be a good option to reduce soil losses, but there is no sufficient information about how to apply a mulch cover from a biophysical, economic and perception point of view to reach a sustainable situation. Fifty paired plots under simulated rainfall showed that the use of a cover of straw mulch of 50 % (1 Mg ha⁻¹) in olive plantations results in a delay in ponding (from 34 to 61 s) and runoff initiation (from 61 to 148 s), and a reduction in total runoff (from 50 to 38 %), sediment concentration (from 15.6 to 2.09 gr l⁻¹) and sediment yield (from 3 to 0.3 gr m² h⁻¹). On the other hand, an economic survey based on interviews show that the use of straw mulch in olive groves will cost 174.7 € ha⁻¹, from which 54.7 € ha⁻¹ is needed for the application work, 52.3 € ha⁻¹ for the purchase cost and 67.7 € ha⁻¹ for the transport of 20 Kg bales that allow easy spreading and management by the farmers. The 43 interviewed farmers produce an average of 1,864 Kg ha⁻¹ of olives, oil richness is 18.64 %, and the final average income is 777 € ha⁻¹. Therefore the cost of the straw is 22.5 % of the total income of the farmers. The farmer's perception was surveyed by means of interviews, and we found that their perception was negative about the use of the straw mulch, as the tradition in the fields is to avoid any weed or cover, except the crop. However, farmers would use straw mulch if they would be subsidized with a minimum of 267 € ha⁻¹, 92 € ha⁻¹ more than the costs estimated on the basis of the surveys. We conclude that soil erosion can be controlled by the use of straw mulches, and that there is a need to subsidize this management due to

the extra cost for the farmers. However, the negative perception of the farmers about the use of straw can only be solved with information, training and tutoring. There is a need of an extension service to update, instruct and coach farmers in the use of sustainable management such as the use of straw mulch.

Keywords: Economy, perception, soil erosion, rainfall simulation, interviews, agricultural sustainability

References

Cerdà, A., Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Pereira, P., Brevik, E., Jordán, A. 2017. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. *Journal of environmental management*, 202, 268-275. Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., Cerdà, A. 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services, *Science of The Total Environment*, 610, 997-1009, Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., Cerdà, A., 2016b. Effects of soil management techniques on soil water erosion in apricot orchards. *Science of the Total Environment* 551, 357-366. Novara, A., Gristina, L., Guaitoli, F., Santoro, A., Cerdà, A., 2013. Managing Soil Nitrate with Cover Crops and Buffer Strips in Sicilian Vineyards. *Solid Earth* 4 (2), 255-262. Panagos, P., Imeson, A., Meusburger, K., Borrelli, P., Poesen, J., & Alewell, C. (2016). Soil Conservation in Europe: Wish or Reality?. *Land Degradation & Development*, 27(6), 1547-1551. Prosdocimi, M., Tarolli, P., Cerdà, A. 2016. Mulching practices for reducing soil water erosion: A review, *Earth-Science Reviews*, 161: 191-203.

Acknowledgments: This research was funded by REACT4MED: Inclusive Outscaling of Agro-Ecosystem Restoration Actions for the Mediterranean. REACT4MED Project (Grant Agreement No. 2122) finanziado por PRIMA, un Programa apoyado por Horizon 2020, European Union Framework Programme for Research and Innovation. info@react4med.eu. SECOMAL AICO/2021/68 Soil Erosion COntrol in Mediterranean Agriculture Land. Conselleria d Innovació, Universitats, ciencia i societat digital.