

Soil Erosion in Agriculture Land in Spain: a Review

Artemi Cerdà^{1,*}, Antonio Giménez Morera², Enric Terol³, Shamsollah Ayoubi⁴, Ana Pérez Albarracín⁵, Ioannis Daliakopoulos⁶ and Saskia Deborah Keesstra⁷

¹*Soil Erosion and Degradation Research Group Departament de Geografia. Universitat de València. Blasco Ibàñez, 28, 46010-Valencia. Spain Artemio.cerda@uv.es*

²*Departamento de Economía y Ciencias Sociales, Universitat Politècnica de València, Cami de Vera S/N, 46022 València, Spain*

³*Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain*

⁴*Department of Soil Science, College of Agriculture, Isfahan University of Technology, 8415683111, Isfahan, Iran*

⁵*Soil Erosion and Degradation Research Group Departament de Geografia. Universitat de València. Blasco Ibàñez, 28, 46010-Valencia. Spain*

⁶*Department of Agriculture, Hellenic Mediterranean University, 71410 Heraklion, Greece.*

⁷*limate-Kic Holding B.V. Plantage Middenlaan 45, Amsterdam, the Netherlands*

Abstract

The pioneering work of Lasanta and Sobrón (1984) on traditional plowing practices in the vineyards of La Rioja showed soil erosion rates $< 1 \text{ Mg ha}^{-1} \text{ year}^{-1}$. López Bermúdez (2002) reported ploughed fields averaged $1.84 \text{ Mg ha}^{-1} \text{ year}^{-1}$ of soil loss in Murcia, but values were lower when cereal crops were planted (barley - $1.04 \text{ Mg ha}^{-1} \text{ year}^{-1}$), and very low on scrubland ($0.05 \text{ Mg ha}^{-1} \text{ year}^{-1}$). This demonstrates that vegetation cover is the key factor that controls soil loss and explains the soil loss reductions found by Francis (1990) and Ruiz Flaño et al., (1992) in the north and south-eastern Spain after land abandonment. In Andalucía, Cuadros et al., (1993) measured soil losses of $10.9 \text{ Mg ha}^{-1} \text{ yr}^{-1}$ in citrus orchards using traditional ploughing methods, while soil loss was reduced to $2.9 \text{ Mg ha}^{-1} \text{ yr}^{-1}$ under non-tillage conditions. De Alba (1998) found soil losses of $2.4 \text{ Mg ha}^{-1} \text{ year}^{-1}$ when cereal fields in the Castilla-La Mancha region are fallow, $0.48 \text{ Mg ha}^{-1} \text{ year}^{-1}$ when a crop is present, $0.67 \text{ Mg ha}^{-1} \text{ yr}^{-1}$ when no-tillage is applied, and only $0.17 \text{ Mg ha}^{-1} \text{ year}^{-1}$ on abandoned land. Bienes and Torcal (1997) found similar results in Central Spain. The available data confirm that agricultural lands contribute to soil exhaustion (Lasanta et al., 2001). In addition, soil erosion rates on agricultural land in Mediterranean environments depend on the type of crop that is grown. Giráldez et al., (1989) used the Universal Soil Loss Equation to show that no-tillage practices reduced the soil losses in all crops they studied (sunflower, wheat, sugar beet, beans) except in olive orchards. However, no-tillage practices aimed to reduce soil losses are not always the most sustainable land management system. Francia et al., (2000) found that no-tillage increased the soil erosion rates ($5.2 \text{ Mg ha}^{-1} \text{ year}^{-1}$), as compared to traditional tillage ($1.3 \text{ Mg ha}^{-1} \text{ year}^{-1}$), and areas with vegetation cover ($0.41 \text{ Mg ha}^{-1} \text{ year}^{-1}$). Martínez-Raya et al., (2001) also found a no-tillage strategy for an Andalucía olive orchard

increased the soil losses to 28.03 Mg ha⁻¹ year⁻¹, as compared to traditional plowing of 9.08 Mg ha⁻¹ year⁻¹, and 1.56 Mg ha⁻¹ year⁻¹ in soil with vegetation cover. Soil losses are usually low or negligible where vegetation cover is present or surface mulches are used (Bienes et al., 2000). The latest research findings on soil erosion for agricultural land in Spain show that non-sustainable soil losses are widespread (Gómez et al., 2004; Arnáez et al., 2006; De Santisteban et al., 2006) and more research is necessary on control of soil erosion by water and tillage. The non-sustainable soil erosion rates in Spain found by the pioneers mentioned here were confirmed along the last decades by many other researchers such as Sastre et al. (2017); Rodrigo-Comino et al. (2018); Merchán et al. (2019); Rodríguez Sousa et al. (2019) and Zuazo et al. (2020).

The review of the literature show that soil erosion in agriculture land is high in comparison to forest land, included the fire affected areas. This show the need to research new strategies to control the non-sustainable soil erosion rates.

Keywords: Soil, Erosion, Spain, Sustainability, Agriculture

References

Arnáez, J., Lasanta, T., Ruiz-Flaño, P. & Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. *Soil & Tillage Research*, 93, 324-334.

Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., ... & Ballabio, C. 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). *Proceedings of the National Academy of Sciences*, 117(36), 21994-22001.

Calatrava, J., & Franco, J. A. 2020. Diffusion of soil erosion control practices in the olive orchards of the Alto Genil Basin (Granada, Spain). *Studies of Applied Economics*, 29(1), 359-384.

Casah, J., López, J. J., & Giráldez, J. V. 1999. Ephemeral gully erosion in southern Navarra (Spain). *Catena*, 36(1-2), 65-84.

Cerdà, A. & Doerr, S.H. 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. *Hydrological Processes*, 21, 2325. 2336.

Cerdà, A. & Jurgensen, M.F. 2008. The influence of ants on soil and water losses from an orange orchard in eastern Spain. *Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie*. 132, 306-314. doi 10.1111/j.1439-0418.2008.01267.x

Cerdà, A., Jurgensen, M.F. & Bodí, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. *Biología*, 3, 527-531. DOI: 10.2478/s11756-009-0114-7.

De Santisteban, L. M., Casalí, J., & López, J. J. 2006. Assessing soil erosion rates in cultivated areas of Navarre (Spain). *Earth Surface processes and landforms: The Journal of the British Geomorphological Research Group*, 31(4), 487-506.

Duan, J., Liu, Y. J., Yang, J., Tang, C. J., & Shi, Z. H. 2020. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. *Journal of Hydrology*, 582, 124290. Chichester, 331-338.

García Ruiz, J.M., Lasanta, T., Ortigosa, L., Ruiz Flaño, P., Martí, C. & González, C. 1995. Sediment yield under different land-uses in the Spanish Pyrenees. *Mountain Research and Development*, 15 (3), 229-240.

García-Ruiz, J. M. 2010. The effects of land uses on soil erosion in Spain: a review. *Catena*, 81(1), 1-11.

García-Ruiz, J. M., Lasanta, T., Nadal-Romero, E., Lana-Renault, N., & Álvarez-Farizo, B. 2020. Rewilding and restoring cultural landscapes in Mediterranean mountains: Opportunities and challenges. *Land Use Policy*, 99, 104850.

Giráldez, J.V., Laguna, A. & González, P. 1989. Soil conservation under minimum tillage techniques in mediterranean dry farming. En Schwertmann, U. Rickson, R.J., Auerswald, K. (Eds.) Soil erosion protection measures in Europe. *Soil Technology series*, 139-148.

Guerra, C. A., Rosa, I. M., Valentini, E., Wolf, F., Filippini, F., Karger, D. N., ... & Eisenhauer, N. 2020. Global vulnerability of soil ecosystems to erosion. *Landscape Ecology*, 1-20.

Guillaume, T., Holtkamp, A. M., Damris, M., Brümmer, B., & Kuzyakov, Y. (2016). Soil degradation in oil palm and rubber plantations under land resource scarcity. *Agriculture, Ecosystems & Environment*, 232, 110-118.

Hondebrink, M. A., Cammeraat, L. H., & Cerdà, A. 2017. The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation. *Science of the Total Environment*, 581, 153-160.

Kamau, S., Barrios, E., Karanja, N. K., Ayuke, F. O., & Lehmann, J. 2017. Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. *Soil Biology and Biochemistry*, 112, 35-46.

Katra, I. 2020. Soil Erosion by Wind and Dust Emission in Semi-Arid Soils Due to Agricultural Activities. *Agronomy*, 10(1), 89.

Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Giménez-Morera, A., Pulido, M., Di Prima, S., & Cerdà, A. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. *Catena*, 174, 95-103.

Keesstra, S., Mol, G., De Leeuw, J., Okx, J., De Cleen, M., & Visser, S. 2018. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. *Land*, 7(4), 133.

Kuzyakov, Y., & Zamanian, K. 2019. Reviews and syntheses: Agropedogenesis-humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. *Biogeosciences*, 16(24), 4783-4803.

Liu, Y., Zhao, L., & Yu, X. (2020). A sedimentological connectivity approach for assessing on-site and off-site soil erosion control services. *Ecological Indicators*, 115, 106434.

López-Vicente, M., Calvo-Seas, E., Álvarez, S., & Cerdà, A. 2020. Effectiveness of cover crops to reduce loss of soil organic matter in a rainfed vineyard. *Land*, 9(7), 230.

Nearing, M. A., Xie, Y., Liu, B., & Ye, Y. 2017. Natural and anthropogenic rates of soil erosion. *International Soil and Water Conservation Research*, 5(2), 77-84

Niu, Y. H., Li, X., Wang, H. X., Liu, Y. J., Shi, Z. H., & Wang, L. 2020. Soil erosion-related transport of neonicotinoids in new citrus orchards. *Agriculture, Ecosystems & Environment*, 290, 106776.

Panagos, P., Ballabio, C., Poesen, J., Lugato, E., Scarpa, S., Montanarella, L., & Borrelli, P. (2020). A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. *Remote Sensing*, 12(9), 1365

Rodrigo-Comino, J., da Silva, A. M., Moradi, E., Terol, E., & Cerdà, A. 2020. Improved Stock Unearthing Method (ISUM) as a tool to determine the value of alternative topographic factors in estimating inter-row soil mobilisation in citrus orchards. *Spanish Journal of Soil Science*, 10(1).

Rodrigo-Comino, J., Keesstra, S., & Cerdà, A. 2018. Soil erosion as an environmental concern in vineyards: the case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments. *Beverages*, 4(2), 31

Rodríguez Martínez-Conde, R., Puga, J.M., Vila, R. & Cibeira, A. 1998. Comportamientos de la escorrentía en un medio oceánico y de uso agrícola (Galicia, España). V Reunión Nacional de Geomorfología, Granada, 547-556.

Rodríguez Sousa, A. A., Barandica, J. M., & Rescia, A. J. 2019. Estimation of Soil Loss Tolerance in Olive Groves as an Indicator of Sustainability: The Case of the Estepa Region (Andalusia, Spain). *Agronomy*, 9(12), 785.

van Leeuwen, C. C., Cammeraat, E. L., de Vente, J., & Boix-Fayos, C. 2019. The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. *Land Use Policy*, 83, 174-186.

Xu, H., Qi, S., Gong, P., Liu, C., & Wang, J. 2018. Long-term monitoring of citrus orchard dynamics using time-series Landsat data: a case study in southern China. *International Journal of Remote Sensing*, 39(22), 8271-8292.

Yang, J., Mo, M. H., Song, Y. J., & Chen, X. A. 2012. Hydro-ecological effects of citrus land under vegetation measures of soil and water conservation in red-soil slope. *Resources and Environment in the Yangtze Basin*, 21(8), 994-999.

Zhang, N., Zhang, Q., Li, Y., Zeng, M., Li, W., Chang, C., ... & Huang, C. 2020. Effect of groundcovers on reducing soil erosion and non-point source pollution in citrus orchards on red soil under frequent heavy rainfall. *Sustainability*, 12(3), 1146.

Zuazo, V. H. D., Rodríguez, B. C., García-Tejero, I. F., Ruiz, B. G., & Tavira, S. C. 2020. Benefits of organic olive rainfed systems to control soil erosion and runoff and improve soil health restoration. *Agronomy for Sustainable Development*, 40(6), 1-15.

Acknowledgments: This work has received funding from REACT4MED: Inclusive Outscaling of Agro-Ecosystem Restoration Actions for the Mediterranean. The REACT4MED Project (grant agreement 2122) is funded by PRIMA, a program supported by Horizon 2020. The “MANEJOS AGRÍCOLAS SOSTENIBLES PARA EL CONTROL DE LA EROSIÓN DEL SUELO EN PLANTACIONES DE CÍTRICOS (CONERO)” research project funded by Ministerio de ciencia e innovación PID2023-151431OB-I00 contributed to the field and laboratory work.