

Mapping Soil Erodibility by Means of Machine Learning Models in a Semi-Arid Watershed

Shamsollah Ayoubi¹, Artemi Cerdà^{2,*}, Mohammad Sajjad Ghavami¹, Zhou Na¹ and Salman Naimi Marandi¹

¹*Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran*

²*Soil Erosion and Degradation Research Group Departament de Geografia. Universitat de València. Blasco Ibàñez, 28, 46010-Valencia. Spain Artemio.cerda@uv.es*

Abstract

To determine the optimal estimation of K factor at this scale in this study two approaches were implemented and compared using machine learning (ML) models. I: spatial modeling of K factor in one hundred points while K factor was already calculated by the soil properties in each point, and II: spatial modeling of soil properties by ML and then integration of prepared maps for determination of K factor. The findings of the study indicated that digital soil mapping by machine learning and the use of easily available ancillary covariates like topographic attributes, thematic maps, and remotely sensed maps could successfully predict the K factor at the watershed scale. The prediction was more reliable in approach II ($R^2 = 0.48$, $nRMSE = 11.89\%$) as compared to approach I ($R^2 = 0.32$, $nRMSE = 11.89\%$). Our results revealed that implementation of approach II for estimating K factor improved the accuracy of K prediction about 51.4% as compared to approach I. The findings of the variable important analysis exhibited amongst the remotely sensed indices, some original bands, Carbonate index(CI), and Ratio vegetation index (RVI), and amongst the topographic features, elevation, multi-resolution of ridge top flatness index (MRRTF), and among the thematic maps, land use map were recognized as the furthermost covariates for estimating the K factor. The resulting map has a substantial consequence in predicting and modeling soil loss and supports soil protection measures.

Keywords: Machine learning, Soil, Erodibility, Watershed, Iran

References

Adhikary, P. P., Tiwari, S. P., Mandal, D., Lakaria, B. L., & Madhu, M. (2014). Geospatial comparison of four models to predict soil erodibility in a semi-arid region of Central India. *Environmental earth sciences*, 72, 5049-5062.

Alaboz, P., Dengiz, O., Demir, S., & Şenol, H. (2021). Digital mapping of soil erodibility factors based on decision tree using geostatistical approaches in terrestrial ecosystem. *Catena*, 207, 105634.

Ghavami, M. S., Ayoubi, S., Mosaddeghi, M. R., & Naimi, S. (2023). Digital mapping of soil physical and mechanical properties using machine learning at the watershed scale. *Journal of Mountain Science*, 20(10), 2975-2992.

Gu, Z., Huang, Y., Feng, D., Duan, X., Xue, M., Li, Y., & Li, Y. (2021). Towards mapping large scale soil erodibility by using pedological knowledge. *Archives of Agronomy and Soil Science*, 67(6),

809-821. Gupta, S., Borrelli, P., Panagos, P., & Alewell, C. (2024). An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity. *Science of the Total Environment*, 908, 168249. Panagos, P., Meusburger, K., Alewell, C., & Montanarella, L. (2012). Soil erodibility estimation using LUCAS point survey data of Europe. *Environmental Modelling & Software*, 30, 143-145. Vaezi, A. R., Sadeghi, S. H. R., Bahrami, H. A., & Mahdian, M. H. (2008). Modeling the USLE K-factor for calcareous soils in northwestern Iran. *Geomorphology*, 97(3-4), 414-423.

Acknowledgments: This work has received funding from REACT4MED: Inclusive Outscaling of Agro-Ecosystem Restoration Actions for the Mediterranean. The REACT4MED Project (grant agreement 2122) is funded by PRIMA, a program supported by Horizon 2020.